

Identification of demand models for estimating the quantities of personal protective equipment (PPE) required for optimal patient care in the context of COVID-19

Submitted to HSE: 3 September 2021

Published: 10 September 2021

About the Health Information and Quality Authority

The Health Information and Quality Authority (HIQA) is an independent statutory authority established to promote safety and quality in the provision of health and social care services for the benefit of the health and welfare of the public.

HIQA's mandate to date extends across a wide range of public, private and voluntary sector services. Reporting to the Minister for Health and engaging with the Minister for Children, Equality, Disability, Integration and Youth, HIQA has responsibility for the following:

- Setting standards for health and social care services Developing person-centred standards and guidance, based on evidence and international best practice, for health and social care services in Ireland.
- **Regulating social care services** The Chief Inspector within HIQA is responsible for registering and inspecting residential services for older people and people with a disability, and children's special care units.
- Regulating health services Regulating medical exposure to ionising radiation.
- Monitoring services Monitoring the safety and quality of health services and children's social services, and investigating as necessary serious concerns about the health and welfare of people who use these services.
- Health technology assessment Evaluating the clinical and costeffectiveness of health programmes, policies, medicines, medical equipment,
 diagnostic and surgical techniques, health promotion and protection activities,
 and providing advice to enable the best use of resources and the best
 outcomes for people who use our health service.
- Health information Advising on the efficient and secure collection and sharing of health information, setting standards, evaluating information resources and publishing information on the delivery and performance of Ireland's health and social care services.
- **National Care Experience Programme** Carrying out national serviceuser experience surveys across a range of health services, in conjunction with the Department of Health and the HSE.

Contents

About t	the Health Information and Quality Authority	2
List of	abbreviations used in this report	4
	ackground	
	ethods	
	esults	
	Search results	
	Models	
	Technical Report	
	Journal Articles	
	ımmary	
	nces	

List of abbreviations used in this report

AMRIC	Antimicrobial Resistance and Infection Control
CDC	Centers for Disease Control and Prevention
CHW	community healthcare worker
COVID-19	coronavirus disease 2019
ED	emergency department
EMS	emergency medical services
EVD	Ebola virus disease
FFP2	filtering face-piece 2
FFP3	filtering face-piece 3
HCW	health care worker
HIQA	Health Information and Quality Authority
HSE	Health Service Executive
ICU	intensive care unit
ILI	influenza-like illness
IPC	infection prevention and control
LTC	long term care
MERS	middle east respiratory syndrome
PPE	personal protective equipment
PRISMA	preferred reporting items for systematic reviews and meta-analyses
SARS	severe acute respiratory syndrome
SEIR	susceptible-exposed-infectious-recovered
SIR	susceptible-infectious-recovered
UK	United Kingdom

USA	United States of America
VHF	viral haemorrhagic fever
WHO	World Health Organization

1 Background

An optimal supply of personal protective equipment (PPE) is necessary to protect healthcare workers and patients and support infection prevention and control practices. Predicting PPE demand is important to inform supply chain management. Appropriate models are required to maximise the use of resources and ensure there is no oversupply or shortages.

In the context of COVID-19 and the PPE requirements required for optimal patient care, the HIQA COVID-19 evidence synthesis team was requested to undertake this review by the Antimicrobial Resistance and Infection Control (AMRIC) team within the Health Service Executive (HSE).

The review addresses the following question:

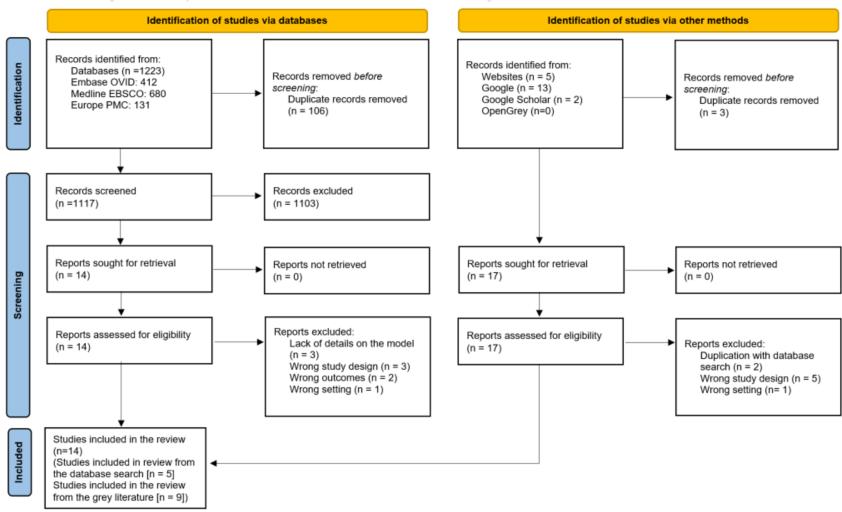
'What models are available that estimate expected PPE requirements for health and social care workers in the context of COVID-19?'

2 Methods

A detailed summary of the methods used in this review is provided in the protocol: Identification of demand models for estimating the quantities of personal protective equipment (PPE) required for optimal patient care in the context of COVID-19.

A systematic literature search of published peer-reviewed articles and non-peer-reviewed pre-prints was undertaken using the search strategies detailed in the protocol. The following electronic databases were searched: MEDLINE (EBSCO), EMBASE (OVID) and Europe PMC, with no language restrictions applied. The search was limited to articles published in the last 10 years (from 19 August 2011 to 19 August 2021). All potentially eligible papers were exported to Covidence (www.covidence.org) for single screening of titles, abstracts, and full texts for relevance based on the inclusion and exclusion criteria outlined in the protocol.

A grey literature search was conducted in Google (https://www.google.com/) on 17 August 2021 using the using the key words, "personal protective equipment (PPE)", "model", "calculator" and "tool". On 25 August 2021, searches of the grey literature database 'OpenGrey' and Google Scholar were conducted using the search string "(PPE OR personal protective equipment) AND (model OR modelling)". The 'OpenGrey' search was limited to articles published in the last 10 years. The first five pages of results from both Google and Google Scholar were screened. On 23 August 2021, the websites of the 14 government and public health agencies outlined in the protocol were searched.


Data extraction of included studies was completed by a single reviewer and checked by a second reviewer. No quality appraisal or critical review of the assumptions, performance or parameters underpinning the models was undertaken as per the agreed scope.

3 Results

3.1 Search results

The database searches resulted in 1,223 citations. Following removal of duplicates, 1,117 citations were screened for relevance against the inclusion criteria outlined in the protocol, with 14 full-texts assessed for eligibility, five of which were considered eligible for inclusion. An additional nine studies were identified from the grey literature search. In total, 14 studies reporting on 13 separate models (eight models,⁽¹⁻⁸⁾ one technical report⁽⁹⁾ and five journal articles⁽¹⁰⁻¹⁴⁾), were identified for inclusion in this review. One article⁽¹⁰⁾ identified details a model,⁽⁷⁾ both of which are described in the report. See Figure 1 for a PRISMA flow diagram of the included studies.

Figure 1 PRISMA flow diagram of included studies.

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71. For more information, visit: http://www.prisma-statement.org/

3.2 Models

A total of eight models were identified in the search; seven excel-based and one web-based. Forecasting PPE demand in the context of COVID-19 was the focus of six of the eight models. (1-4, 7, 8) One model forecasted over a range of disease areas including pandemic influenza, novel influenza, middle east respiratory syndrome (MERS), severe acute respiratory syndrome (SARS), Ebola virus disease (EVD) and viral haemorrhagic fever (VHF). (6) Another was modelled in the context of EVD only. (5)

All eight models included the hospital setting (for example, emergency department, screening/triage, inpatient, outpatient, ICU and non-ICU). (1-8) One model also included nursing homes and emergency medical services (EMS) settings. (1) Another model included isolation (3) (at home or at a community facility [for example, a hotel] for mild to moderate cases) and laboratory settings. (3) Two models included settings where testing takes place. (2, 3) One model is applicable across all settings that require PPE. (8) No models specifically allowed for general practice, primary care or homecare settings.

Two models identified were published before $2020,^{(5, 6)}$ four in $2020,^{(1, 2, 4, 7)}$ and two in $2021.^{(3, 7)}$ The sources of these models include; a global organisation, $^{(3)}$ three from national public health agencies based in the USA, $^{(5, 6, 8)}$ three universities, two based in the USA and one in Lebanon, $^{(1, 2, 4)}$ and a private healthcare analytics company based in the USA. $^{(7)}$ Data extraction of the identified models is provided in Table 1.

3.3 Technical Report

One technical report was identified detailing a model which focuses on forecasting PPE requirements in the context of COVID-19 for hospitals, long-term care facilities, EMS, fire rescue, law enforcement and correction facilities. The model was designed by the Maryland Emergency Management Agency, a state agency within the Maryland Military Department in the USA.⁽⁹⁾ Data extraction of the identified technical report is provided in Table 2.

3.4 Journal Articles

There were five journal articles identified that detailed PPE demand models; two excel-based, ^(12, 14) one web-based ⁽¹⁰⁾ and two that did not provide this information. ^(11, 13) One article identified in the database search ⁽¹⁰⁾ discussed a model that was identified in the grey literature search. ⁽⁷⁾ One article included was published before 2020, ⁽¹²⁾ three in 2020^(10, 11, 14) and one in 2021. ⁽¹³⁾

Four of the five articles focused on PPE demand in the context of COVID- $19^{(10-14)}$ and one in the context of an influenza pandemic. Of the five journal articles identified, two detailed models from the USA, two from Canada and one from Germany.

All five models included the hospital setting, (10-14) and two specifically included acute care within hospitals. (11, 12) One model included nursing homes, (12) and settings involving first responder groups (for example, emergency medical services, police officers, and firefighters). (12) Data extraction of the identified journal articles is provided in Table 2.

Table 1 Data extraction of models which are accessible to use or download via the internet

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
Title:	Disease area:	Model aim:	Model design/layout:
WHO COVID-19	COVID-19	The model aims to aid governments, partners and	There are 21 tabs in the model
Essential Supplies		stakeholders in the estimation of essential supplies to	spreadsheet including:
Forecasting Tool	Setting(s):	respond to the ongoing COVID-19 pandemic. Essential	a 'disclaimer' and 'tool overview'
(COVID-ESFT) v4 ⁽³⁾	Inpatient (inpatient	supplies forecasted include PPE, hygiene and infection	tab
	care of severe or	prevention and control (IPC) commodities, biomedical	 five tabs of parameter inputs
Model source:	critical patients)	equipment for case management, diagnostic reagents	three summary output tabs
World Health		and equipment, essential pharmaceuticals for	(detailing commodity
Organization	Screening/triage	supportive care, and consumable medical supplies.	requirements per week
(WHO)	(initial screening and		(including PPE) and weekly
	triage of suspected	Overview of the model:	forecasts of the number of
Website/URL:	cases)	Model selection	HCWs, tests, and hospital beds
https://www.wh		 The user can select their home country and the 	which may be needed)
o.int/publication	Isolation (at home or	model will self-populate with the healthcare	five tabs for the number of
s/i/item/WHO-	at a community	information specific to that country (for example,	patients (based on model
2019-nCoV-	facility [for example, a	number of healthcare workers per bed).	selection, case estimation
Tools-Essential-	hotel] for mild to	Alternatively, the user can manually input	method and forecasting method
forecasting-	moderate cases)	infrastructure and staff assumptions in the 'inputs'	selected)
<u>2021-1</u>		tab. The tool is best suited for estimating essential	six tabs detailing the sources for
	Laboratories	supply needs over a short period (not defined),	the individual country input data.
Last updated:	(laboratories where	but can be used for longer periods at an increased	
14 April 2021	tests are processed or	risk of uncertainty.	Input parameters:
	conducted)	 It is recognised that there is a broad range of 	HCWs and staff
Model design:		health care workers (HCWs) involved in the	number of HCWs in the
Excel-based		response to COVID-19 but due to limitations in	country/region

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
	Population(s): Health care workers (medical practitioners, physicians, nurses and paramedical practitioners)	 availability of data, only nurses and doctors are included in the main model. Including PPE requirements of non-COVID essential services is optional. This includes midwives, dentists, laboratory scientists, physiotherapists, community healthcare workers (CHWs), traditional and complementary medical 	 proportion of HCWs not activated for COVID-19 care proportion of HCWs treating hospitalised COVID-19 inpatients proportion of HCWs screening and triaging suspected COVID-19 cases
	Cleaners	personnel, doctors and nurses that are not involved in the treatment of COVID-19. In this	number of HCWs per bednumber of cleaners per bed
	Caregivers (patient carers such as a parent or spouse)	instance PPE usage is informed by experts at the WHO, but can be adjusted manually.	number of ambulance personnel per bednumber of biomedical engineers
	Paramedics and ambulance drivers Patient (suspected case or diagnosed case of COVID-19)	 Model assumptions The model makes several assumptions for the reference case, but these can be manually overridden by the user. For example, the reference case assumes that 60% of HCWs and staff are caring for COVID-19 patients and that 40% of all cases are mild. 	per bed cases screened/triaged per HCW per day number of informal care givers for severe/critical patients treated at hospital number of informal caregivers
	Optional: Non-COVID essential	 The model also makes assumptions that the user cannot override. For example there are four patient states: mild, moderate, severe and critical 	for mild/moderate patients isolating.
	services (essential medical services unrelated to COVID-19 such as community healthcare workers, midwives, dentists	 and the model does not allow for transitions between states. Several assumptions underpin this model which the WHO outlines in the overview of the model. PPE usage assumptions were initially provided by the WHO Operational Support Logistics, based on 	 Hospital and care infrastructure number of hospital beds in country proportion of hospital beds not allocated for COVID-19 care.

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
	and nurses and doctors who are not involved with COVID-19 care)	rational use of items on the COVID-19 Disease Commodity Package. These assumptions were subsequently updated by the IPC experts at WHO. Methods of forecasting Users can select from multiple methods of forecasting numbers of infections over time. This includes a manual entry option, the Imperial Susceptible-Exposed-Infectious-Recovered (SEIR) Model and the Susceptible-Infectious-Recovered (SIR) Model. Users can also select a clinical attack rate – very low, low, medium, high or manual input and testing strategy. The user can select either the testing of "all suspected cases" or "targeted testing". The tool is not recommended for use as an epidemiological model.	 proportion available for severe COVID-19 patients proportion available for critical COVID-19 patients length of stay by case severity Laboratories and testing number of days worked by laboratory staff number of hours in a work day max testing capacity per day number of laboratory staff in the country proportion of laboratory staff available for COVID-19 testing number of laboratories conducting COVID-19 testing number of laboratory staff per laboratory number of cleaners per laboratory. Epidemiological inputs known cumulative cases case severity (proportion of mild, moderate, severe and critical cases)

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
			 dependent on the method of forecasting infections selected
			Hygiene - chlorine, high test hypochlorite 70% - alcohol-based hand rub - liquid soap - bio-hazardous bag.
			 ppE gown, protective scrubs, tops scrubs, pants apron, disposable apron, heavy duty, reusable gum boots gloves, heavy duty gloves, examination gloves, surgical goggles, protective face shield respirator mask, medical / surgical for
			health workermask, medical / surgical for patient.

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
			Optional
			PPE Outputs:
Title: CDC PPE Burn Rate Calculator Version 2 ⁽⁸⁾	Disease area: COVID-19 Setting: Can be used across all	Model aim: Spreadsheet-based model that aims to help healthcare facilities plan and optimise the use of PPE in response to COVID-19. Non-healthcare facilities such as correctional facilities may also find this tool useful.	Total quantity and cost, per day, by PPE type (over the duration modelled) for COVID-19 care and non-COVID essential services is provided by setting and for each population group (for example, HCWs, cleaners, CHWs etc.). Model design/layout: There are eight tabs in the model spreadsheet, one each for: instructions the burn rate calculator
Model source:	settings that require	Correctional racinges may also find this tool userui.	total PPE on-hand
Centers for Disease Control and Prevention (CDC) Website/URL: https://www.cdc.g ov/coronavirus/201 9-ncov/hcp/ppe-	the use of PPE.	Overview of the model: The tool will calculate the average consumption rate, also referred to as a "burn rate" for each type of PPE entered in the spreadsheet. This information can then be used to estimate how long the remaining supply of PPE will last, based on the average consumption rate (burn rate). The calculator can also help facilities to project future needs.	 total PPE on-hand graph units used per day graph number of days' supply remaining graph average burn rate graph average PPE used per patient graph.

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
strategy/burn-calculator.html Last updated: March 2021 Model design: Excel-based Country: USA		 How the calculator works: (17) Starting at day 1, the number of units of each type of PPE in stock and the number of units of PPE received should be entered. The user also has the option to enter the number of suspected or confirmed COVID-19 patients at the start of each day. The PPE supply from the day prior is subtracted from the current day (Day 2-Day 1) and entered considering the resupply. As additional data is added, the daily use of PPE is used to calculate the average consumption rate of the previous five days. The number of units of PPE entered is divided by the consumption rate to calculate the number of days' supply remaining. If the user has inputted the number of suspected or confirmed cases at the start of each day, the average PPE used per patient will be displayed. 	Input parameters: PPE
Title:	Disease area: COVID-19	Model aim:	Model design/layout:

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
Worksheet for calculating national PPE need for COVID-19 ⁽¹⁾ Model source:	Setting(s): Hospital ICU non-ICU emergency	The model aims to calculate PPE requirements for a 100-day wave of infection with sustained suppression measures. Overview of the model: The model uses predictions of rates of infection,	The model spreadsheet consists of one tab containing all calculations and outputs. Input parameters: Epidemiological inputs
Johns Hopkins Bloomberg School of Public Health	department (ED). Outpatient	hospital admission, ICU admission and deaths to calculate PPE requirements. All input parameters can be manually entered by the user.	 Number of: clinical cases hospital admissions ICU admissions
Website/URL: https://www.center forhealthsecurity.or g/resources/COVID -19/PPE/PPE-	Nursing homes Emergency medical services (EMS)	The assumptions underpinning the model are based on a combination of actual counts of use in practice and the expert judgment of ICU clinicians. The model assumes that COVID-19 patients are separated from non-COVID-19 patients. With the exception of the	 deaths. Rate of: case fatality attack hospital admission.
assumptions Last updated: April 2020	Population(s): Hospital staff ED staff	emergency medical department, the assumption is made that gloves are changed with every patient encounter.	PPE ■ PPE type:
Model design: Excel-based	Outpatient staff	PPE assumptions are as follows by setting: PPE use in hospitals: ICU:	glovesgownsN95 respirators
Country: USA	Nursing Home staff EMS staff	 Gowns: a single gown is worn for 4 hours by each HCW assigned to a COVID-19 ward, unless it becomes visibly soiled. Accounting for all HCWs involved in the care of an ICU patient, 20 gown changes per patient per day. 	 simple masks PPE changes: per patient per day per patient visit per day per EMS call-out.
		per patient per dayr	PPE Outputs:

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
		 Simple masks: 10 changes per patient per day. N95 respirators: a single mask is worn for 4 hours by each HCW assigned to the care of COVID-19 patients. N95s are used only by healthcare workers in proximity (3 feet) to COVID-19 patients. 6 changes per patient per day. Non-ICU: Gowns: a single gown is worn for 4 hours by each HCW assigned to a COVID-19 ward, unless it becomes visibly soiled. Accounting for all HCWs involved in the care of a non-ICU patient, 20 gown changes per patient per day. Simple masks: 10 changes per patient per day. N95 respirators: worn only for intubations, nebuliser treatments, and other aerosol-generating procedures. Average of 2.6 changes per patient per day. 	PPE outputs for each setting are grouped into the 4 PPE types and presented as overall requirements per type. PPE by setting can also be found amongst the calculations.
		 PPE use in emergency departments: Gowns: a single gown is worn for 4 hours by each HCW assigned to the care of COVID-19 patients, unless it becomes visibly soiled. Average of one gown change per patient attending the ED. 	

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
		 Simple masks: a single mask is worn for 4 hours by each HCW assigned to the care of COVID-19 patients, unless it becomes visibly soiled. Average of one mask change per patient attending the ED. N95 respirators: worn only for intubations, nebuliser treatments, and other aerosolgenerating procedures. PPE use in outpatient settings: Assumes that 25% of COVID-19 cases will seek an in- 	
		person outpatient visit (considering many cases may be handled by telemedicine). o Gowns: average of one change per visit. o Simple masks: average of one change per visit. o N95 respirators: respirators worn only for intubations, nebuliser treatments, and other aerosol-generating procedures.	
		 PPE use in nursing homes: Assumes a 10% attack rate in nursing homes. Gowns: average of 3 changes per visit. Simple masks: average of 1.5 changes per visit. N95 respirators: not anticipated to be used in this setting. 	
		PPE use by emergency medical services staff:	

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
		Assumes that 10% of COVID-19 hospital admissions arrive by ambulance. O Gloves: 2 gloves for each crew member per call-out. O Gowns: one gown for each crew member per suspected COVID-19 call-out. O Simple masks: one mask for each crew member per call-out. N95 respirators: one respirator for an average of one crew member for each suspected COVID-19 call-out.	
Title:	Disease area:	Model aim:	Model design/layout:
Personal Protective Equipment Calculator for	COVID-19 Setting(s):	This model aims to forecast PPE requirements during the COVID-19 pandemic.	There are 4 tabs in the model spreadsheet: cover sheet which contains a link
COVID-19 ⁽⁴⁾	Hospital ICU	Overview of the model: The tool uses forecasted patient admission and census	to instructions input data (projected
Model source: Perelman School of Medicine University of Pennsylvania	Step-downFloorED	information as its inputs and generates the predicted consumption of PPE critical for the care of COVID-19 patients as its output. The tool also allows the user to tailor the inputs to represent the specific situation relevant to their hospital or healthcare system. The	hospitalised/ICU/ventilated patients, new admissions and census data) Interface (choose a scenario)
Website/URL: https://penn- chime.phl.io/	Population(s): Nurse	underlying calculations are based on PPE consumption data that was collected at the University of Pennsylvania.	output.Input parameters:Number of:
Last updated:	Resident	The tool allows hospitals and health systems to make	 COVID-19 patients hospitalised
30 April 2020	Attending	projections using three pre-populated scenarios. These scenarios (standard, contingency, and crisis)	COVID-19 patients in ICU

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
Model design: Excel-based Country: USA	Respiratory Therapist	correspond to projections for PPE use under increasingly strict PPE conservation policies. These scenarios were developed in consultation with providers across several different hospital departments to ensure that they capture realistic assumptions about how PPE materials are used in standard care within a hospital and what would constitute reasonable PPE conservation strategies when there are PPE shortages.	 COVID-19 patients on ventilators new COVID-19 admissions. Staff nurse resident attending respiratory therapist. PPE N95 surgical mask gloves (pairs) gowns booties bouffant cap disposable eye protection powered air-purifying respirator (PAPR). Scenario Assumptions (based on 'scenario' selected but can be customised): Staffing-based calculation assumptions: patient to staff ratios shift length (in hours) number of shifts permitted per item of PPE.

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
			 Contact-based calculation assumptions: number of contacts with patients per day number of contacts permitted per item of PPE.
			PPE Outputs: Daily and cumulative PPE forecasts are presented by PPE type.
Title:	Disease area:	Model aim:	Model design/layout:
Hospital Resource	COVID-19	The aim of this calculator is to allow a hospital to	Web page has three subpages
Calculator for		understand its resource use; including beds, ICU beds,	 COVID calculator
COVID-19 ⁽⁷⁾	Setting:	ventilators, and PPE in USA states.	employee forecasts
	Hospital		instructions and details.
Model source:		Overview of the model:	
Chicago Healthcare	Population:	This calculator can be used to calculate the number of	Input parameters:
Analytics	Hospital staff	net new COVID-19 patients seen by a system each	Hospital variables
Woheite /UDL		day, how many of these patients will require	○ ICU beds
Website/URL: https://rush-		hospitalisation and plan for forecasted resource use. It can also help to forecast the demand for PPE over	○ non-ICU beds
covid19.herokuapp.		time based on patient volume.	 percentage of new cases
com/		diffe based on padent volume.	presenting to the hospital
COTTY		The model is most effective for a 7 day window, and	 percentage admitted
Last updated:		the uncertainty for the prediction increases the further	 percentage admitted to ICU
March 2020		the forecast is projected. In areas with state wide	 daily number of transfers
		initiatives like 'shelter at home', the model will not	admitted
Model design:		factor those initiatives in.	 percentage of transfers
Web-based			admitted to ICU

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
			 percentage of ICU patients on ventilators non-ICU length of stay ICU length of stay ICU mortality rate time lag in hospital visitation. PPE glove surgical glove exam nitrile glove exam vinyl mask face procedure anti fog mask procedure fluid resistant gown isolation XL yellow mask surgical anti fog face shield full anti-fog particulate filter respirators. PPE Outputs: PPE requirements are presented in a table by PPE type on a per day basis.
Title:	Disease area:	Model aim:	Model design/layout:
COVID-19 AUBMC	COVID-19	This model is a resource needs forecasting tool. It	There are 6 tabs in the model
Surge needs		aims to estimate potential requirements for essential	spreadsheet:
Calculator ⁽²⁾	Setting:	supplies to respond to the current COVID-19	disclaimer
	Hospital inpatient	pandemic. The calculated resource requirements	tool overview
Model source:	ICH	include, in-patient beds, ventilators, ICU beds and PPE	peak active cases (input)
	ICU	for both admitted cases and testing.	

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
American University of Beirut Medical Center Website/URL: https://www.aub.e du.lb/fm/vmp/Docu ments/COVID- 19_AUBMC_SURGE NEEDS_CALCULA TOR.xlsx Last updated: 2020 Model design: Excel-based Country: Lebanon	Population: Hospital staff and patients	Overview of the model: This calculator helps guide users through the required inputs and assumptions that are needed in order to calculate supply needs. The calculator intends to give an estimate of the supply needs and possible shortages at peak periods of the pandemic. Supplies are forecasted based on the time horizon selected by the user (max 200 days). Overall patient numbers are used primarily for forecasting bulk essential supply needs. The calculator is not intended to be used as an epidemiological model.	 PPE (input and output) ventilators (input and output) hospital beds (input and output). Input parameters for PPE estimation: percentage of patients on a ventilator duration of pandemic (days) average number of admitted patients average number of additional tested patients per day PPE: plastic gown gloves surgical face mask face shield N95 mask. PPE Outputs: COVID-19 PPE requirements are presented by type as: per patient per day per ICU patient per day average total per day total for admitted cases total for testing

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
			 total needed (admitted cases and testing) average needed per day (admitted cases and testing).
Title: Hospital PPE Planning Tool ⁽⁶⁾ Model source: Assistant Secretary for Preparedness and Response	Disease area: 1. Pandemic influenza 2. Special Respiratory Pathogen (MERS/SARS/Novel	Model aim: The Hospital PPE Planning Tool is designed to help hospitals determine approximate PPE needs based on special pathogen category (described across) and a number of facility specific variables. It is not intended as a clinical tool and should be used as a pre-incident planning tool, not during an outbreak.	Model design/layout: There are 7 tabs in the model spreadsheet, one for each of the disease areas and associated settings: overview EVD initial evaluation/stable
(ASPR) (US Department of Health and Human Services) Website/URL: https://files.asprtracie-	Influenza) 3. Ebola Virus Disease/Viral Hemorrhagic Fever (EVD/VHF) Setting(s): Pandemic Influenza Inpatient	Overview of the model: The tool is intended as a starting point for facility planners to estimate the minimum PPE that may be required based on the role the hospital has in the community (does the hospital provide screening only or screening and hospitalisation). It does not account for PPE required for training and replacing PPE that is	 patient EVD Hospitalised/unstable patient MERS/ SARS/ Novel influenza initial evaluation MERS/SARS/ Novel hospitalised patient pandemic influenza inpatient pandemic influenza ED.
hospital-ppe- planning-tool.xlsx Last updated: 2018 Model design: Excel-based Country:	ED MERS or SARS or Novel Influenza initial evaluation hospitalised patient	contaminated, damaged, or otherwise rendered unusable in the course of patient care. It also does not consider that higher levels of PPE may be warranted in selected situations (such as during airway management). The tool should be considered in conjunction with other planning tools, resources, information, and facility and community-wide preparedness efforts.	 Each tab contains: Directions for use Section 1: Staffing inputs (the number of persons per shift for each role and the number of shifts per day for each role)

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
USA	EVD/VHF initial evaluation/ stable patient hospitalised /unstable patient. Population(s): Hospital staff: nurse doctor healthcare assistant environmental services laboratory technician respiratory therapist radiologist electrocardiogr am technician trained observer other (includes spiritual care,	The tool's outputs are based on the inputs in Section 1 of each tab regarding staffing (type of personnel, length of shifts) and types of PPE commonly used by the facility and the assumptions in Section 2 about the types and amounts of PPE needed for the type of special pathogen and patient status. Users of the tool should make adjustments to the assumptions when warranted based on their knowledge of their facility, community, and their level of preparedness. Users should also be aware that preincident assumptions may not hold true during an incident. Changes to the assumptions may dramatically affect the accuracy of the outputs. Portions of this tool are based on the CDC Ebola PPE Calculator (described below), (5) which was developed to assist healthcare facilities in estimating their PPE needs when managing a patient with Ebola virus disease. However, this tool expanded upon the CDC PPE Calculator and added additional variables and scenarios to provide healthcare facilities with a broader tool.	 Section 2: PPE Assumptions (by type) Section 3: Outputs (total PPE needed by role for duration of outbreak). Input parameters: Staff floor nurses ICU nurses doctors healthcare assistants environmental services laboratory technician respiratory therapy radiology ECG technician other (biomedical, other medical/surgical personnel, spiritual care). PPE gloves shoe covers gowns N95 respirators. PPE Outputs:

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
	biomedical, and other medical/surgic al personnel as required.		Total PPE requirements for the number of days modelled and per shift. PPE requirements are presented by staff type and PPE type for each disease area and associated setting.
Title: US Centers for Disease Control and Prevention (CDC) – Ebola PPE Calculator ⁽⁵⁾	Disease area: Ebola Setting(s): Hospital	Model aim: The PPE calculator tool is designed to help estimate the amount of PPE that hospitals may need to manage the care of one patient hospitalised with Ebola.	Model design/layout: There are 3 tabs in the model spreadsheet: Overview PPE Summary (incl. output) Required input – number of persons required by role and
Model source: CDC Website/URL: https://www.cdc.g ov/vhf/ebola/healt hcare- us/ppe/calculator.h	Population(s): Hospital staff Inurses (with patient contact) Iduation(s): Hospital staff Inurses (with patient contact)	Overview of the model: The model determines the amount of PPE a hospital needs for a multi-disciplinary healthcare team managing a patient with Ebola. The model considers various factors associated with the care of an Ebola patient including: configuration of the healthcare team and intended	number of shifts per person per day. PPE Assumptions Required input - estimated PPE (by type) required per role per shift.
tml Last updated: August 2015	 environmental services (person responsible for cleaning/ decontaminating 	 interaction with the patient acuity of the patient length of shifts number of required breaks for staff wearing PPE waste management strategy 	Input parameters: Staff nurses doctors trained observer
Model design: Excel-based Country:	the patient's room while the patient is present)	 isolation unit location and support strategies lab location laboratory testing demand length of the patient's hospital stay 	 environmental services laboratory technician.

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
USA	laboratory	 hospital protocols for products. 	■ PPE
	technician.		o gown (disposable,
		In the model, hospital inventory needs must be	impervious)
		assessed on a case by case basis because the ability	coverall
		to stockpile large amounts of PPE may be limited. It is	o glove (ex. cuff)
		recommended that facilities determine an appropriate	o glove exam
		interval for monitoring of minimum PPE requirements	boot/shoe cover
		(for example, every 8 hours). The assumptions in the	resistant apron
		tool are based on input provided by subject matter	 powered air purifying
		experts involved in the Ebola response.	respirator (PAPR)
			PAPR shroud
			 PAPR battery
			 N95 respirator
			surgical hood
			face shield.
			PPE Outputs:
			PPE requirements by type are
			presented as the number of each
			unit required per shift for each type
			of hospital staff.

Table 2 Data extraction of models described within technical reports and the literature.

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
Author: Furman et al.	Disease area: COVID-19	Model aim: To estimate the total clinical workload of a hospital department, to then predict the demand for PPE.	Model design/layout:Not provided
Title: Prediction of personal protective equipment use in	Setting(s): Hospital Population(s):	Overview of the model: The admission of patients to a medical department was modelled using multiple independent queues. Each	 Input parameters: Patients' acuity level Clinical diagnosis Length of stay
hospitals during COVID-19 ⁽¹³⁾	Hospital staff	queue represented a class of patients with similar treatment plans and hospital length of stay. The total workload of each class was estimated, from which	PPEglovesgowns
Journal: Health Care Management Science		estimates were derived for the expected amount of PPE required over a specified time horizon using PPE guidelines.	 surgical masks N95 masks face shields bouffant caps
DOI: https://doi.org/10.1007/s10729-021-09561-5		The modelling approach is flexible; it can be deployed at multiple scales (departmental, hospital, regional) and in multiple settings (outbreaks or regular operations). The general framework can accommodate the wide variability in patient volumes between institutions, differences in the nature of typical patient and doctor	 boot covers. PPE Outputs: Prediction of PPE usage by type as a function of the number of clusters.
Country: Canada Publication		interactions at the ward-level, and distinct hospital policies governing default PPE usage in non-patient encounters (for example, mandatory masking at all times). The model assumes that the total hospital	
status/date: Peer-reviewed		capacity is always sufficient to meet demand.	

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
April 2021			
Author:	Disease area:	Model aim:	Model design/layout:
Pfenninger and Kaisers	COVID-19	The primary goal of this study was to develop a tool to predict the stock of PPE required at a trans-regional	Excel based
	Setting:	university hospital for a certain period of time during	Input parameters:
Title: Provisioning of	Hospital	the COVID-19 pandemic.	Number of patients in ICUNumber of patients in infection
personal protective	Population:	Overview of the model:	ward
equipment in hospitals in preparation for a pandemic ⁽¹⁴⁾ Journal: Der Anaesthetist DOI: https://doi.org/10. 1007/s00101-020- 00843-1 Country: Germany Publication status/date:	Hospital staff	PPE consumption per patient in ICU or in an infection ward was calculated based on the following data from the Ulm University Hospital: • Total PPE consumption of healthcare workers' for April 2020 recorded by the materials management department • Number of patients suffering from COVID-19 and their number of treatment days • Actual number of medical staff for ICU and infection wards. From the amount of PPE necessary for every patient in ICU or in an infection ward, a PPE calculator was created in which the estimated amount of PPE was calculated with the input variables "number of patients in ICU", "number of patients in infection ward" and "length of stay". To validate the PPE calculator, the actual consumption of PPE for May 2020 at the Ulm University hospital was compared to the theoretically	 Length of stay PPE gloves nitrile (various types and sizes) FFP2/EN149 FFP2 with flat valve FFP3/EN149 green mask with elastic band safety glasses visor gown overall (liquid-tight) visitor smock respirator gloves.
Peer-reviewed September 2020		calculated demand by the PPE calculator.	Estimated consumption per day and per patient in ICU and in the infectious ward.

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
(Paper translated from German using google translate)			
Author:	Disease area:	Model aim:	Model design/layout:
Locey et al.	COVID-19	A web application, discussed above (Table 1) ⁽⁷⁾ was	 Web-based application.
		developed for US states and territories to predict the	
Title:	Setting:	spread of COVID-19 and to provide forecasts for	Input parameters:
An interactive tool	Hospital	hospital visits, admissions, discharges and to anticipate	 Hospital variables
to forecast US		needs for intensive care unit (ICU) and non-ICU beds,	o ICU beds
hospital needs in	Population:	ventilators, and PPE in US hospitals.	o non-ICU beds
the coronavirus	Hospital staff	Our day of the weeds le	 percentage of new cases
2019 pandemic ⁽¹⁰⁾		Overview of the model:	presenting at hospital
Journal:		The application was developed in response to the needs	 percentage of admissions
JAMIA Open		of the Rush University System for Health in anticipation of COVID-19 cases and subsequent surges. It is	 percentage of admissions to
JAMIA Open		designed to be interactive and easy to use for hospital	ICU
DOI:		leaders, healthcare workers and government officials.	 daily number of transfers
https://doi.org/10.		leaders, regulated workers and government officials.	admitted
1093/jamiaopen/oo		The application aggregates reports of cumulative cases	 percentage of transfers
aa045		across US states and territories, state and territory	admitted to ICU
<u> </u>		population sizes based on US Census Bureau data	 percentage of ICU patients
Country:		(2010–2019), dates of COVID-19 arrival from state and	on ventilators
USA		territory health agencies, and testing and	o non-ICU length of stay
		hospitalisation levels. Users can choose from a suite of	 ICU length of stay
Publication		models to predict the spread of COVID-19 and can	 ICU mortality rate
status/date:		modify a large set of inputs to obtain forecasts for their	
Peer-reviewed		institution, examine variability in forecasts over time,	hospital.
August 2020		download forecast data for further analysis, and explore	■ PPE
		trends in hospitalisation and testing.	o glove surgical

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
		After entering expected per patient daily values for PPE items, PPE forecasts are produced by multiplying the expected PPE values by their respective patient type across the forecasted census.	 glove exam nitrile glove exam vinyl face mask procedure anti-fog face mask procedure fluid resistant surgical mask anti-fog face shield full anti-fog isolation gown XL yellow particulate filter respirators. PPE Outputs: PPE forecasts are presented graphically by type in the web application. Users can also download data pertaining to each forecast. These csv files are dynamically updated upon any changes to their associated graphs or tables.
Title:	Disease area:	Model aim:	Model design/layout:
MEMA COVID-19 Burn Rate	COVID-19	The development of the Maryland Burn Rate Projection Planning Tool was driven by the need to support	Not provided.
Projection Planning Tool ⁽⁹⁾	Setting(s): Hospitals	several critical planning factors: a single tool for projecting PPE burn rate across the state	 Input parameters: Total number of hospital beds occupied by positive COVID-19
Organisation: Maryland Emergency	Long-Term Care (LTC) facilities	 an intuitive tool requiring no special training accurate data-driven projections. Overview of the model:	patients Number of COVID-19 hospitalised patients 24, 48, and 72 hours ago

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
Management Agency Website/URL: https://mema.mary land.gov/Document s/MEMA_COVID- 19-Burn-Rate- Projection-Tool- Report.pdf Publication date: June 2020	Emergency Medical Service (EMS) and fire rescue Law enforcement and correction Population: Staff in the above specified settings	The process of developing the model entailed the cataloging of thousands of daily PPE burn rate reports of 6,500 patients from around the state. This dataset allowed the team to construct a forecasting tool that used formulas built on real-world data collected over two months during the peak of the initial COVID-19 response. Features of the model include: projected changes in hospitalisations state-wide burn rate across critical infrastructure functions such as hospitals and LTC facilities burn rate projections per county for use by county level emergency planners.	■ Total number of EMS response calls for the past 24 hours. ■ PPE
Author: Barrett et al.	Disease area: COVID-19	Model aim: This model was designed to inform COVID-19 pandemic capacity planning in acute care.	Model design/layout: Not provided.
A model to estimate demand for personal protective equipment for Ontario acute care hospitals during the COVID-19 pandemic ⁽¹¹⁾	Setting(s): Acute hospital setting	Overview of the model: Health system modelling was used to predict PPE demand in acute care settings, informed by interviews and direct observation of hospital administrators and healthcare workers (HCWs) caring for COVID-19 patients. An existing health state transition model ⁽¹⁵⁾ that predicts COVID-19 ED visits and hospitalisations in	Input parameters: ■ Epidemiological data ■ Clinical practice patterns ■ PPE ○ surgical masks ○ N95 mask ○ gloves ○ gloves (extended) ○ face shield ○ face shield with drape

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
Journal: medRxiv DOI: https://doi.org/10. 1101/2020.04.29.2 0085142 Country: Canada	Acute hospital staff	Ontario, Canada, was extended, and based on the region's population, the number of observed confirmed cases of COVID-19, and observed trajectories of case numbers, the model estimated the number of new cases of COVID-19 predicted to present to the ED daily from 6 March to 5 May 2020. In the model, cases were either sent home or admitted to hospital based on disease severity, and moved through the acute care hospital system occupying ward or ICU beds, with or without mechanical ventilation, based on probabilities derived from reported and observed data.	o gowns. PPE Outputs: Total PPE requirements by type over a 60-day period near the height of the pandemic.
Publication status/date: Pre-print 5 May 2020		To determine the amount of PPE utilised per patient, patient "touchpoints" were estimated. A touchpoint is defined as any time a HCW enters a patient room or is required to physically interact with a patient or their environment, during which PPE may be required. For each in-patient hospital setting, the number of patient touchpoints were estimated within a 24-hour period, for each type of HCW, given the COVID-19 status of the patient (confirmed, suspected or negative), and whether the patient received invasive mechanical ventilation or was being turned prone. "PPE bundles" (list of required PPE) were created for a confirmed case, a person under investigation, or non-infected patients based on Public Health Ontario guidance for PPE use during the COVID-19 pandemic.	

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
		The total PPE consumption per patient was calculated as the product of daily touchpoints and PPE bundles.	
Author: Carias et al. Title: Potential Demand	Disease area: Influenza pandemic Setting(s): Hospital:	Model aim: The model aims to inform planning for an influenza pandemic by estimating demand for N95 filtering face piece respirators (respirators) for healthcare and EMS personnel and surgical masks for patients.	Model design/layout: Excel-based. Input parameters: Dependent on scenario modelled
for Respirators and Surgical Masks During a Hypothetical Influenza Pandemic in the United States ⁽¹²⁾	 ICU General wards (GW) ED Outpatient care settings 	Overview of the model: A spreadsheet model was developed in which the number of influenza cases was estimated using four standardised pandemic scenarios, with two attack rates (20%, 30%) and two levels of severity (defined by hospitalisation, ED visits and EMS transportation rates).	 Percentage of cases hospitalised admitted to the ED transported by EMS. All scenarios Pandemic case to ILI case
Journal: Clinical Infectious Diseases	Nursing homes First responders (EMS, police officers, and firefighters)	For each of the 4 pandemic scenarios, 3 respirator distribution scenarios were modelled: • base case demand • intermediate demand • maximum demand	 multiplier Percentage of cases that seek outpatient care Percentage of hospitalisations requiring ICU Length of stay (days)
https://doi.org/10. 1093/cid/civ141	Population(s): Hospital staff	In the base case, demand for respirators was assumed proportional to the number of patients over time until shortly after the pandemic peaked and then constant	 ED ICU general ward.
Country: USA Publication	Nursing home staff First responders	thereafter. Demand was estimated by multiplying the predicted number of pandemic patients per day by the number of times patients had contact with workers. In	Workforcehospital workers/% with patient contact
status/date: Peer-reviewed	Patients with suspected infection	the intermediate case, it was assumed that respirator use increased proportionally to the epidemic curve and	 outpatient HCWs/% with patient contact

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
May 2015	with the pandemic strain	in the maximum demand case it was assumed that the demand was constant throughout the pandemic. For all scenarios, the number of surgical masks required for source control in all settings (hospital, nursing homes, outpatient settings, and EMS) was estimated by multiplying the weekly number of influenza-like illness (ILI) patients by the number of masks per patient per day and by the number of days that patients would spend in each setting. Assumptions in the model: Patients in ICUs had contact with 12 to 16 HCWs per day, hence, 12 to 16 respirators would be needed in the ICU per patient per day. Patients in general wards had contact with 8 HCWs per day. HCWs per day. HCWs in EDs, out patients' settings, as well as first responders, use 4 respirators per day at the beginning of the pandemic. The number of workers having contact with pandemic patients would proportionally increase as the number of pandemic patients increased (following the epidemic curve upward). After the pandemic has peaked, it is assumed that the number of workers using respirators would remain fixed.	 ED workers/% with patient contact. EMS workers/% with patient contact nursing home workers/% with patient contact police officers in US (millions)/% with public contact firefighters in US (millions)/% with public contact. Demographics USA population Percentage of USA population aged ≥ 65 years in nursing homes. Number of masks worn in: ICU (per patient/day) general ward (per patient/day) ED (per worker/day; per patient/day) outpatient (per worker/day; per patient/day) nursing homes (per patient) EMS (per worker/day; per patient/day) police (per worker/day)

Characteristics	Disease Area Setting Population	Overview	Model/Calculator/Tool features
		 90% of first responders, 67% of HCWs in outpatient settings, 25% of nursing home workers, and 100% of ED workers would have contact with patients. 40% to 56% of all pandemic patients would seek medical care. 	 fire personnel (per worker/day). PPE Outputs: Total respirator demand as the sum of demand in all settings for the duration of the pandemic for all scenarios. Surgical masks demand as the total needed for patients with ILI or with the pandemic strain of influenza.

4 Summary

This review identified 13 relevant demand models (described across 14 separate documents) estimating personal protective equipment (PPE) requirements in hospital and community settings in the context of COVID-19. While the models identified consider a diverse range of settings, the majority relate to secondary and tertiary care facilities. Three of the 13 models identified include nursing homes or long-term care facilities and one model allows for the optional inclusion of non-COVID essential services including community healthcare workers. Eight of the 13 included models were developed in the USA, two in Canada, one in Germany, one in Lebanon and one was developed by a global organisation.

Consistent with the agreed upon scope, no comparison of the assumptions and parameters underpinning the models was undertaken. Similarly, an evaluation of the literature comparing the performance of the various models was not carried out.

References

- 1. Johns Hopkins Bloomberg School of Public Health. Assumptions 2020 [Available from: https://www.centerforhealthsecurity.org/resources/COVID-19/PPE-assumptions.
- American University of Beirut Medical Center. COVID-19 AUBMC Surge needs Calculator 2020 [Available from: https://www.aub.edu.lb/fm/vmp/Documents/COVID-19 AUBMC SURGE NEEDS CALCULATOR.xlsx.
- 3. World Health Organization. COVID-19 Essential Supplies Forecasting Tool. 2021.
- 4. Perelman School of Medicine University of Pennsylvania. COVID-19 Hospital Impact Model for Epidemics (CHIME) 2020 [Available from: https://pennchime.phl.io/.
- 5. Centers for Disease Control and Prevention. Estimated Personal Protective Equipment (PPE) Needed for Healthcare Facilities 2015 [Available from: https://www.cdc.gov/vhf/ebola/healthcare-us/ppe/calculator.html.
- 6. Assistant Secretary for Preparedness and Response (ASPR) (US Department of Health and Human Services). Hospital Personal Protective Equipment Planning Tool 2018 [Available from: https://files.asprtracie.hhs.gov/documents/aspr-tracie-hospital-ppe-planning-tool.xlsx.
- 7. Chicago Healthcare Analytics. Hospital Resource Calculator for COVID-19 2020 [Available from: https://webalyticos.home.blog/2020/03/24/covd19forecast/.
- 8. Centers for Disease Control and Prevention. Personal Protective Equipment (PPE) Burn Rate Calculator (Version 2) 2021 [Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/burn-calculator.html.
- 9. Maryland Emergency Management Agency. COVID-19 Burn Rate Projection Planning Tool 2020.
- 10. Locey KJ, Webb TA, Khan J, Antony AK, Hota B. An interactive tool to forecast US hospital needs in the coronavirus 2019 pandemic. JAMIA open. 2020;3(4):506-12.
- 11. Kali Barrett YN, Terra Ierasts, Yasin A. Khan, Stephen Mac, David Naimark, Nathan M. Stall, Raphael Ximenes, Andrew M. Morris, Beate Sander. A model to estimate demand for personal protective equipment for Ontario acute care hospitals during the COVID-19 pandemic. medRxiv. 2020.
- 12. Carias C, Rainisch G, Shankar M, Adhikari BB, Swerdlow DL, Bower WA, et al. Potential Demand for Respirators and Surgical Masks During a Hypothetical Influenza Pandemic in the United States. Clinical Infectious Diseases. 2015;60(suppl_1):S42-S51.
- 13. Furman E, Cressman A, Shin S, Kuznetsov A, Razak F, Verma A, et al. Prediction of personal protective equipment use in hospitals during COVID-19. Health Care Management Science. 2021:1-15.

- 14. Pfenninger EG, Kaisers UX. [Provisioning of personal protective equipment in hospitals in preparation for a pandemic]. Der Anaesthesist. 2020;69(12):909-18.
- 15. Barrett K, Khan YA, Mac S, Ximenes R, Naimark DM, Sander B. Potential magnitude of COVID-19-induced healthcare resource depletion in Ontario, Canada. medRxiv. 2020:2020.04.19.20071712.
- 16. World Health Organization. Disease commodity package Novel Coronavirus (COVID-19). World Health Organization, 2020.
- 17. Centers for Disease Control and Prevention. CDC PPE Burn Rate Calculator Version 2 Instructions. 2021.

Published by the Health Information and Quality Authority (HIQA).
For further information please contact:
Health Information and Quality Authority
George's Court
George's Lane
Smithfield

+353 (0)1 8147400 info@hiqa.ie www.hiqa.ie

Dublin 7

D07 E98Y